Friday 24 February 2017

Filter Erster Ordnung

Nehmen wir den IIR-Filter erster Ordnung an: yn alpha xn (1 - alpha) yn - 1 Wie kann ich den Parameter alpha s. t. Das IIR annähernd so gut wie möglich die FIR, die das arithmetische Mittel der letzten k Proben ist: Wo n in k, infty), was bedeutet, dass der Eingang für den IIR länger als k sein kann und dennoch Id die beste Annäherung der haben Mittelwert der letzten k Eingänge. Ich weiß, die IIR hat unendliche Impulsantwort, daher Im auf der Suche nach der besten Annäherung. Id für die analytische Lösung glücklich sein, ob es für oder ist. Wie konnten diese Optimierungsprobleme nur mit der 1. Ordnung IIR gelöst werden. (1 - alpha) yn - 1 genau ndash Es ist verpflichtet, eine sehr schlechte Annäherung zu werden. Can39t Sie leisten, alles, was mehr als ein First-Order IIR ndash leftaroundover Okt 6 11 at 13:42 Vielleicht möchten Sie Ihre Frage bearbeiten, so dass Sie don39t verwenden yn zu zwei verschiedenen Dingen bedeuten, z. Könnte die zweite angezeigte Gleichung zn frac xn cdots frac xn-k1 lesen, und Sie könnten sagen, was genau ist Ihr Kriterium der Quoten gut als möglichequot z. B. Wollen Sie vert yn - znvert so klein wie möglich für alle n, oder vert yn - znvert2 so klein wie möglich für alle n sein. Ndaren Dilip Sarwate Ich weiß, das ist eine alte Post so, wenn Sie sich erinnern können: wie ist Ihre Funktion 39f39 abgeleitet I39ve codiert eine ähnliche Sache, sondern mit den komplexen Übertragungsfunktionen für FIR (H1) und IIR (H2 ) Und dann Summe (abs (H1 - H2) 2). I39ve verglichen dieses mit Ihrer Summe (fj), aber erhalten unterschiedliche resultierende Ausgänge. Dachte, ich würde vor dem Pflügen durch die Mathematik fragen. (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 1 ampamp alpha xn (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 2 ampamp alpha xn (1 - alpha) alpha xn-1 (1 - alpha) 2 alpha xn-2 (1 - alpha) 3 yn - 3 Ende, so daß der Koeffizient von xn-m alpha (1-alpha) m ist . Der nächste Schritt ist, Derivate zu nehmen und gleich Null zu sein. Betrachtet man ein Plot des abgeleiteten J für K 1000 und Alpha von 0 bis 1, sieht es aus wie das Problem (wie Ive es aufgestellt) ist schlecht gestellt, weil die beste Antwort ist Alpha 0. Ich denke, Theres ein Fehler hier. Die Art und Weise sollte es nach meinen Berechnungen sein: Mit dem folgenden Code auf MATLAB ergibt etwas Äquivalentes zwar unterschiedlich: Jedenfalls haben diese Funktionen Minimum. So können wir annehmen, dass wir uns nur um die Annäherung über die Unterstützung (Länge) des FIR-Filters kümmern. In diesem Fall ist das Optimierungsproblem genau: J2 (alpha) sum (alpha (1-alpha) m - frac) 2 Das Plotten J2 (alpha) für verschiedene Werte von K versus alpha ergibt das Datum in den Diagrammen und der Tabelle unten. Für K 8. alpha 0,1533333 für K 16. alpha 0,08 für K 24. alpha 0,0533333 für K 32. alpha 0,04 für K 40. alpha 0,0333333 für K 48. alpha 0,0266667 für K 56. alpha 0,0233333 für K 64. alpha 0,02 für K 72. alpha 0.0166667 Die roten gestrichelten Linien sind 1K und die grünen Linien alpha, der Wert von alpha, der J2 (alpha) minimiert (ausgewählt aus tt alpha 0: 0,01: 13). Theres eine nette Diskussion dieses Problems in der eingebetteten Signalverarbeitung mit der Mikrosignalarchitektur. Etwa auf den Seiten 63 und 69. Auf Seite 63 ist eine Ableitung des exakten rekursiven gleitenden Durchschnittsfilters (die niaren in seiner Antwort gegeben hat) enthalten. Zur Bequemlichkeit in Bezug auf die folgende Diskussion entspricht sie der folgenden Differenzengleichung: Die Näherung Die den Filter in die von Ihnen angegebene Form bringt, vorausgesetzt, dass x approx y, weil (und ich zitiere aus S. 68) y der Mittelwert von xn Proben ist. Diese Approximation erlaubt es uns, die vorstehende Differenzengleichung wie folgt zu vereinfachen: Einstellen von alpha, erhalten wir zu Ihrer ursprünglichen Form y alpha xn (1-alpha) y, was zeigt, dass der Koeffizient, den Sie (in Bezug auf diese Approximation) genau 1over haben wollen (Wobei N die Anzahl der Proben ist). Ist diese Annäherung die beste in irgendeiner Hinsicht Seine sicherlich elegant. Heres, wie sich die Amplitudenreaktion bei 44,1 kHz für N 3 vergleicht und wenn N auf 10 erhöht wird (Approximation in blau): Wie aus der Peters-Antwort hervorgeht, kann die Annäherung eines FIR-Filters mit einem rekursiven Filter unter einer Kleinste-Quadrate-Norm problematisch sein. Eine ausführliche Diskussion darüber, wie dieses Problem im Allgemeinen gelöst werden kann, finden Sie in JOSs These, Techniken für Digitalfilter Design und System Identifikation mit Anwendung auf die Violine. Er befürwortet die Verwendung der Hankel-Norm, aber in Fällen, in denen die Phasenreaktion keine Rolle spielt, deckt er auch die Kopecs-Methode ab, die in diesem Fall gut funktionieren könnte (und eine L2-Norm verwendet). Einen breiten Überblick über die Techniken in der Arbeit finden Sie hier. Sie können andere interessante Approximationen. Exponential Filter Diese Seite beschreibt exponentielle Filterung, die einfachste und beliebteste Filter. Dies ist Teil des Abschnitts Filterung, der Teil des Leitfadens zur Fehlerdetektion und - diagnose ist. Überblick, Zeitkonstante und Analogäquivalent Der einfachste Filter ist der Exponentialfilter. Es hat nur einen Abstimmungsparameter (außer dem Probenintervall). Es erfordert die Speicherung nur einer Variablen - der vorherigen Ausgabe. Es ist ein IIR (autoregressive) Filter - die Auswirkungen einer Eingangsveränderung Zerfall exponentiell, bis die Grenzen der Displays oder Computer Arithmetik verstecken. In verschiedenen Disziplinen wird die Verwendung dieses Filters auch als 8220exponentielle Glättung8221 bezeichnet. In einigen Disziplinen wie der Investitionsanalyse wird der exponentielle Filter als 8220Exponential Weighted Moving Average8221 (EWMA) oder nur 8220Exponential Moving Average8221 (EMA) bezeichnet. Dies missbräuchlich die traditionelle ARMA 8220moving average8221 Terminologie der Zeitreihenanalyse, da es keinen Eingabehistorie gibt, der verwendet wird - nur die aktuelle Eingabe. Es ist die diskrete Zeit-Äquivalent der 8220 ersten Ordnung lag8221 häufig in Analog-Modellierung von Dauer-Zeit-Systeme verwendet. In elektrischen Schaltkreisen ist ein RC-Filter (Filter mit einem Widerstand und einem Kondensator) eine Verzögerung erster Ordnung. Bei der Betonung der Analogie zu analogen Schaltungen, ist der einzige Tuning-Parameter die 8220time constant8221, in der Regel als klein geschriebenen griechischen Buchstaben Tau () geschrieben. Tatsächlich entsprechen die Werte bei den diskreten Abtastzeiten genau der äquivalenten kontinuierlichen Zeitverzögerung mit der gleichen Zeitkonstante. Die Beziehung zwischen der digitalen Implementierung und der Zeitkonstante wird in den folgenden Gleichungen gezeigt. Exponentielle Filtergleichungen und Initialisierung Das Exponentialfilter ist eine gewichtete Kombination der vorherigen Schätzung (Ausgabe) mit den neuesten Eingangsdaten, wobei die Summe der Gewichte gleich 1 ist, so dass die Ausgabe mit dem Eingang im stationären Zustand übereinstimmt. Nach der bereits eingeführten Filternotation ist y (k) ay (k - 1) (1 - a) x (k) wobei x (k) die Roheingabe zum Zeitschritt ky (k) die gefilterte Ausgabe zum Zeitschritt ka ist Ist eine Konstante zwischen 0 und 1, normalerweise zwischen 0,8 und 0,99. (A-1) oder a wird manchmal die 8220-Glättungskonstante8221 genannt. Für Systeme mit einem festen Zeitschritt T zwischen Abtastwerten wird die Konstante 8220a8221 nur dann berechnet und gespeichert, wenn der Anwendungsentwickler einen neuen Wert der gewünschten Zeitkonstante angibt. Bei Systemen mit Datenabtastung in unregelmäßigen Abständen muss bei jedem Zeitschritt die exponentielle Funktion verwendet werden, wobei T die Zeit seit dem vorhergehenden Abtastwert ist. Der Filterausgang wird normalerweise initialisiert, um dem ersten Eingang zu entsprechen. Wenn die Zeitkonstante 0 nähert, geht a auf Null, so dass keine Filterung 8211 der Ausgang dem neuen Eingang entspricht. Da die Zeitkonstante sehr groß wird, werden Ansätze 1, so dass neue Eingabe fast ignoriert wird 8211 sehr starkes Filtern. Die obige Filtergleichung kann in folgendes Vorhersagekorrektor-Äquivalent umgeordnet werden: Diese Form macht deutlich, dass die variable Schätzung (Ausgabe des Filters) unverändert von der vorherigen Schätzung y (k-1) plus einem Korrekturterm basiert wird Auf die unerwartete 8220innovation8221 - die Differenz zwischen dem neuen Eingang x (k) und der Vorhersage y (k-1). Diese Form ist auch das Ergebnis der Ableitung des Exponentialfilters als einfacher Spezialfall eines Kalman-Filters. Die die optimale Lösung für ein Schätzproblem mit einem bestimmten Satz von Annahmen ist. Schrittantwort Eine Möglichkeit, den Betrieb des Exponentialfilters zu visualisieren, besteht darin, sein Ansprechen über die Zeit auf eine Stufeneingabe aufzuzeichnen. Das heißt, beginnend mit dem Filtereingang und dem Ausgang bei 0 wird der Eingangswert plötzlich auf 1 geändert. Die resultierenden Werte sind nachstehend aufgetragen: In dem obigen Diagramm wird die Zeit durch die Filterzeitkonstante tau geteilt, so daß man leichter prognostizieren kann Die Ergebnisse für einen beliebigen Zeitraum, für jeden Wert der Filterzeitkonstante. Nach einer Zeit gleich der Zeitkonstante steigt der Filterausgang auf 63,21 seines Endwertes an. Nach einer Zeit gleich 2 Zeitkonstanten steigt der Wert auf 86,47 seines Endwertes an. Die Ausgänge nach Zeiten gleich 3,4 und 5 Zeitkonstanten sind jeweils 95,02, 98,17 bzw. 99,33 des Endwerts. Da der Filter linear ist, bedeutet dies, dass diese Prozentsätze für jede Größenordnung der Schrittänderung verwendet werden können, nicht nur für den hier verwendeten Wert 1. Obwohl die Stufenantwort in der Theorie aus praktischer Sicht eine unendliche Zeit in Anspruch nimmt, sollte man an den exponentiellen Filter 98 bis 99 8220done8221 denken, der nach einer Zeit gleich 4 bis 5 Filterzeitkonstanten reagiert. Variationen des Exponentialfilters Es gibt eine Variation des exponentiellen Filters mit dem Namen 8220nonlinearem exponentiellem Filter8221 Weber, 1980. Es soll starkes Rauschen innerhalb einer bestimmten 8220typical8221 Amplitude filtern, aber dann schneller auf größere Änderungen reagieren. Copyright 2010 - 2013, Greg Stanley Teilen Sie diese Seite: 5.2 Glättung Zeitreihe Glättung ist in der Regel getan, um uns besser zu sehen Muster, Trends zum Beispiel in Zeitreihen. Im Allgemeinen glätten Sie die unregelmäßige Rauheit, um ein klareres Signal zu sehen. Für saisonale Daten, könnten wir glätten die Saisonalität, so dass wir den Trend identifizieren können. Smoothing stellt uns nicht mit einem Modell, aber es kann ein guter erster Schritt bei der Beschreibung der verschiedenen Komponenten der Serie. Der Begriff Filter wird manchmal verwendet, um ein Glättungsverfahren zu beschreiben. Wenn zum Beispiel der geglättete Wert für eine bestimmte Zeit als eine lineare Kombination von Beobachtungen für Umgebungszeiten berechnet wird, kann man sagen, dass wir ein lineares Filter auf die Daten angewandt haben (nicht dasselbe wie das Ergebnis, dass das Ergebnis eine gerade Linie ist der Weg). Die traditionelle Verwendung des Begriffs gleitender Durchschnitt ist, dass wir zu jedem Zeitpunkt (möglicherweise gewichtete) Mittelwerte der beobachteten Werte bestimmen, die eine bestimmte Zeit umgeben. Zum Zeitpunkt t. Wäre ein zentrierter gleitender Durchschnitt der Länge 3 mit gleichen Gewichten der Mittelwert der Werte zu Zeiten t -1. T. Und t1. Um Saisonalität aus einer Serie wegzunehmen, so können wir besser sehen Trend, würden wir einen gleitenden Durchschnitt mit einer Länge Saisonspanne verwenden. Somit wurde in der geglätteten Reihe jeder geglättete Wert über alle Jahreszeiten gemittelt. Dies kann getan werden, indem man einen einseitigen gleitenden Durchschnitt betrachtet, in dem Sie alle Werte für die Daten der letzten Jahre oder einen zentrierten gleitenden Durchschnitt, in dem Sie Werte sowohl vor als auch nach der aktuellen Uhrzeit verwenden, mittlere. Für vierteljährliche Daten können wir beispielsweise einen geglätteten Wert für die Zeit t als (x t x t - 1 x t - 2 x t - 3) 4, den Durchschnitt dieser Zeit und die vorhergehenden 3 Quartale, definieren. Im R-Code ist dies ein einseitiger Filter. Ein zentrierter gleitender Durchschnitt erzeugt ein wenig Schwierigkeit, wenn wir eine gerade Anzahl von Zeitperioden in der Saisonspanne haben (wie wir es normalerweise tun). Um Saisonalität in vierteljährlichen Daten zu glätten. Um Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt des gleitenden Mittels zum Zeitpunkt t zu verwenden, um Saisonalität in den Monatsdaten weg zu glätten. Um den Trend zu identifizieren, besteht die übliche Konvention darin, den zum Zeitpunkt t geglätteten gleitenden Durchschnitt zu verwenden. Das heißt, wir setzen das Gewicht 124 auf Werte zu Zeiten t6 und t6 und Gewicht 112 auf alle Werte zu allen Zeiten zwischen t5 und t5. In der R-Filter-Befehl, auch einen zweiseitigen Filter, wenn wir Werte, die sowohl vor als auch nach der Zeit für die Glättung verwendet werden möchten. Beachten Sie, dass auf Seite 71 unseres Buches die Autoren gleiche Gewichte über einen zentrierten saisonalen gleitenden Durchschnitt anwenden. Das ist auch okay. Zum Beispiel kann eine vierteljährliche Glättung zum Zeitpunkt t geglättet werden. Fraktal x frac x frac xt frac x frac x Ein monatlich glatter kann ein Gewicht von 113 auf alle Werte von Zeiten t-6 bis t6 anwenden. Der Code, den die Autoren auf Seite 72 verwenden, nutzt einen rep-Befehl, der einen Wert eine bestimmte Anzahl von Malen wiederholt. Sie verwenden nicht den Filterparameter innerhalb des Filterbefehls. Beispiel 1 Vierteljährliche Bierproduktion in Australien In Lektion 1 und Lektion 4 haben wir eine Reihe von vierteljährlichen Bierproduktionen in Australien betrachtet. Der folgende R-Code erzeugt eine geglättete Reihe, die es ermöglicht, das Trendmuster zu sehen und dieses Trendmuster auf demselben Graphen wie die Zeitreihen aufzuzeichnen. Der zweite Befehl erstellt und speichert die geglättete Serie im Objekt namens trendpattern. Beachten Sie, dass im Filterbefehl der Parameter namens filter die Koeffizienten für unsere Glättung und die Seiten 2 eine zentrierte Glättung ergibt. Beerprod scan (beerprod. dat) trendpattern filter (beerprod, filter c (18, 14, 14, 14, 18), seiten2) zeichnung (beerprod, typ b, hauptbewegter durchschnittlicher jährlicher trend) zeilen (trendpattern) Könnte das Trendmuster von den Datenwerten subtrahieren, um einen besseren Einblick in die Saisonalität zu erhalten. Das Ergebnis: Eine weitere Möglichkeit zur Glättung von Reihen, um Trend zu sehen, ist der einseitige Filter trendpattern2 filter (beerprod, filter c (14, 14, 14, 14), Seiten 1) Damit ist der geglättete Wert der Durchschnitt des vergangenen Jahres. Beispiel 2. U. S. Monatliche Arbeitslosigkeit In den Hausaufgaben für Woche 4 sahen Sie eine monatliche Reihe von US-Arbeitslosigkeit für 1948-1978. Heres eine Glättung getan, um den Trend zu betrachten. Trendunemployfilter (arbeitslos, filterc (124,112,112,112,112,112,112,112,124), seiten2) trendunemploy ts (trendunemploy, start c (1948,1), freq 12) plot (trendunemploy, mainTrend in der US-Arbeitslosigkeit, 1948-1978, xlab Jahr) Es wird nur der geglättete Trend aufgetragen. Der zweite Befehl identifiziert die Kalenderzeitmerkmale der Serie. Das macht die Handlung eine sinnvollere Achse. Die Handlung folgt. Für nicht-saisonale Serien, Sie Arent gebunden, um über eine bestimmte Spanne glätten. Zur Glättung sollten Sie mit gleitenden Mittelwerten verschiedener Spannen experimentieren. Diese Zeitspannen könnten relativ kurz sein. Das Ziel ist, um die rauen Kanten zu klopfen, um zu sehen, welche Tendenz oder Muster dort sein könnte. Andere Glättungsmethoden (Abschnitt 2.4) Abschnitt 2.4 beschreibt einige anspruchsvolle und nützliche Alternativen zur gleitenden mittleren Glättung. Die Details können skizzenhaft erscheinen, aber das ist okay, weil wir nicht wollen, in vielen Details für diese Methoden zu erhalten. Von den alternativen Methoden, die in Abschnitt 2.4 beschrieben werden, kann die niedrigste (lokal gewichtete Regression) am häufigsten verwendet werden. Beispiel 2 Fortsetzung Die folgende Grafik ist geglättet Trendlinie für die U. S. Arbeitslosigkeit Serie, gefunden mit einem Lowess Glättung, in denen eine erhebliche Menge (23) zu jedem geglätteten Schätzung beigetragen. Beachten Sie, dass dies die Serie mehr aggressiv als die gleitenden Durchschnitt geglättet. Die verwendeten Befehle waren Arbeitslosenquoten ts (Arbeitslosenquoten, beginnen c (1948,1), freq12) oft Grundstück (Lowess (Arbeitslosenquoten, f 23), Haupt Lowess Glättung der US-Arbeitslosen Trend) Einzel exponentielle Glättung Die grundlegende Prognosegleichung für einfache exponentielle Glättung Gegeben als Hut alpha xt (1-alpha) hat t text Wir prognostizieren, dass der Wert von x zum Zeitpunkt t1 eine gewichtete Kombination des beobachteten Wertes zum Zeitpunkt t und des prognostizierten Wertes zum Zeitpunkt t ist. Obwohl die Methode eine Glättungsmethode genannt wird, wird sie hauptsächlich für Kurzzeitprognosen verwendet. Der Wert von heißt Glättungskonstante. Aus welchem ​​Grund auch immer, 0.2 ist eine beliebte Standard-Auswahl von Programmen. Dies ergibt ein Gewicht von 0,2 auf die neueste Beobachtung und ein Gewicht von 1,2,8 auf die jüngste Prognose. Bei einem relativ kleinen Wert wird die Glättung relativ umfangreicher sein. Bei einem relativ großen Wert ist die Glättung relativ weniger umfangreich, da mehr Gewicht auf den beobachteten Wert gesetzt wird. Dies ist eine einfache, einstufige Prognosemethode, die auf den ersten Blick kein Modell für die Daten erfordert. Tatsächlich ist dieses Verfahren äquivalent zu der Verwendung eines ARIMA (0,1,1) - Modells ohne Konstante. Das optimale Verfahren ist, ein ARIMA (0,1,1) Modell an den beobachteten Datensatz anzupassen und die Ergebnisse zu verwenden, um den Wert von zu bestimmen. Dies ist optimal im Sinne der Schaffung der besten für die bereits beobachteten Daten. Obwohl das Ziel eine Glättung und eine Vorausschätzung ist, bringt die Äquivalenz zum ARIMA-Modell (0,1,1) einen guten Punkt. Wir sollten nicht blind gelten exponentielle Glättung, weil die zugrunde liegende Prozess möglicherweise nicht gut modelliert werden durch eine ARIMA (0,1,1). ARIMA (0,1,1) und exponentielle Glättung Equivalence Betrachten wir ein ARIMA (0,1,1) mit einem Mittelwert von 0 für die ersten Differenzen, xt - x t-1: beginnen Hut amp amp xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat neigen. Wenn wir (1 1) und damit - (1) 1 zulassen, sehen wir die Äquivalenz zu Gleichung (1) oben. Warum ist die Methode der exponentiellen Glättung aufgerufen Daraus ergibt sich folgende: Hut amp amp alpha xt (1-alpha) alpha x (1-alpha) hat amp amp alpha xt alpha (1-alpha) x (1-alpha) 2hat Ende beginnen Weiter Auf diese Weise durch sukzessives Ersetzen des prognostizierten Wertes auf der rechten Seite der Gleichung. Dies führt zu: Hut alpha xt alpha (1-alpha) x alpha (1-alpha) 2 x dots alpha (1-alpha) jx Punkte alpha (1-alpha) x1 Text Gleichung 2 zeigt, dass der prognostizierte Wert ein gewichteter Durchschnitt ist Aller vergangenen Werte der Serie, mit exponentiell wechselnden Gewichten, wie wir zurück in der Reihe bewegen. Optimale Exponentialglättung in R Grundsätzlich passen wir nur einen ARIMA (0,1,1) an die Daten an und bestimmen den Koeffizienten. Wir können die Anpassung der glatten durch Vergleich der vorhergesagten Werte mit der tatsächlichen Reihe untersuchen. Exponentielle Glättung neigt dazu, mehr als eine Prognose-Tool als eine echte glatte verwendet werden, so waren auf der Suche zu sehen, ob wir eine gute Passform haben. Beispiel 3. N 100 monatliche Beobachtungen zum Logarithmus eines Ölpreisindexes in den Vereinigten Staaten. Die Datenreihe ist: Eine Anpassung von ARIMA (0,1,1) in R ergab einen MA (1) - Koeffizienten von 0,3877. So (1 1) 1,3877 und 1- -0,3877. Die exponentielle Glättungsvorhersagegleichung ist Hut 1.3877xt - 0.3877hat t Zum Zeitpunkt 100 ist der beobachtete Wert der Reihe x 100 0.86601. Der vorhergesagte Wert für die Serie zu dieser Zeit ist also die Prognose für Zeit 101 Hut 1.3877x - 0.3877hat 1,3877 (0,86601) -0,3877 (0,856789) 0,8696 Es folgt, wie gut die glattere die Serie passt. Sein eine gute Passform. Das ist ein gutes Zeichen für die Prognose, der Hauptzweck für diese glatter. Hier sind die Befehle, die verwendet werden, um die Ausgabe für dieses Beispiel zu erzeugen: Ölindexabtastung (oildata. dat) Diagramm (Ölindex, Typ b, Hauptprotokoll der Ölindex-Reihe) expsmoothfit arima (Ölindex, Auftrag c (0,1,1)) expsmoothfit Arima Ergebnisse predicteds oilindex zu sehen - expsmoothfitresiduals vorhergesagten Werte Grundstück (oilindex, TypeB, Haupt exponentielle Glättung von Log Öl Index) Linien (predicteds) 1.3877oilindex100-0.3877predicteds100 Prognose für die Zeit 101 Doppel exponentielle Glättung Doppel exponentielle Glättung könnte verwendet werden, wenn theres (Langfristig oder kurzfristig), aber keine Saisonalität. Im Wesentlichen erzeugt das Verfahren eine Prognose durch Kombinieren von exponentiell geglätteten Schätzungen des Trends (Steigung einer Geraden) und des Pegels (grundsätzlich des Abschnitts einer Geraden). Zur Aktualisierung dieser beiden Komponenten werden jeweils zwei verschiedene Gewichte oder Glättungsparameter verwendet. Das Glättungsniveau entspricht mehr oder weniger einer einfachen exponentiellen Glättung der Datenwerte, und der geglättete Trend entspricht mehr oder weniger einer einfachen exponentiellen Glättung der ersten Differenzen. Das Verfahren entspricht der Anpassung eines ARIMA (0,2,2) Modells, ohne Konstante kann es mit einem ARIMA (0,2,2) Fit durchgeführt werden. (1-B) 2 xt (1theta1B theta2B2) wt. Navigation


No comments:

Post a Comment